Note
Go to the end to download the full example code.
LHC Rigid Waist Shift
This example shows how to use the apply_lhc_rigidity_waist_shift_knob
function to force a waist shift at a given IP and break the symmetry of the
\(\beta\)-functions in the Interaction Region. This is done by
over-powering one triplet knob and under-powering the other, by the same
powering delta.
In Soubelet et al. [SPT+23] (2023) one can find out about studies and achievements at the LHC done with the Rigid Waist Shift.
We will do a comparison of the interaction region situation before and after applying a rigid waist shift, and look in more details at the waist shift itself.
Note
This is very specific to the LHC machine and the implementation in these functions would not work on other accelerators.
Important
This example requires the acc-models-lhc
repository to be cloned locally. One
can get it by running the following command:
git clone -b 2022 https://gitlab.cern.ch/acc-models/acc-models-lhc.git --depth 1
Here I set the 2022 branch for stability and reproducibility of the documentation builds, but you can use any branch you want.
from collections import namedtuple
from multiprocessing import cpu_count
import matplotlib.pyplot as plt
import numpy as np
import tfs
from cpymad.madx import Madx
from joblib import Parallel, delayed
from pyhdtoolkit.cpymadtools import lhc, matching, twiss
from pyhdtoolkit.plotting.lattice import plot_latwiss
from pyhdtoolkit.plotting.styles import _SPHINX_GALLERY_PARAMS
from pyhdtoolkit.plotting.utils import draw_ip_locations, get_lhc_ips_positions
from pyhdtoolkit.utils import logging
logging.config_logger(level="error")
plt.rcParams.update(_SPHINX_GALLERY_PARAMS) # for readability of this tutorial
Showcasing the Waist Shift
Let’s start by setting up the LHC in MAD-X
, in this case at top energy.
To understand the function below have a look at the lhc setup example.
We will use the plot_latwiss
function to have a zoomed-in look
at the Interaction Region 1 by providing the xlimits parameter. Let’s first
get the IP postitions with get_lhc_ips_positions
:
nominal_df = twiss.get_twiss_tfs(madx)
ips = get_lhc_ips_positions(nominal_df)
ip1s = ips["IP1"]
Let’s now have a look at the IR in normal conditions.
plt.figure(figsize=(18, 11))
plot_latwiss(
madx,
title="LHCB1 IR1 - No Rigid Waist Shift",
disp_ylim=(-0.4, 1.9),
xoffset=ip1s,
xlimits=(-200, 200),
k0l_lim=2.25e-3,
k1l_lim=6.1e-2,
lw=1.5,
)
plt.gcf().axes[-2].set_xlabel(r"$\mathrm{Distance\ to\ IP1\ [m]}$")
for axis in plt.gcf().axes:
axis.axvline(x=0, color="grey", ls="--", lw=1.5, label="IP1")
plt.show()
Notice the (anti-)symmetry of the \(\beta_{x,y}\) functions and triplet
quadrupoles powering on the right and left-hand side of the IP. Let’s now apply
a rigid waist shift - meaning all four betatron waists moving simultaneously - by
changing the triplets powering. This is handled by the convenient function
apply_lhc_rigidity_waist_shift_knob
.
It is possible to choose the knob’s strength, in which IR to apply it, and on which side of the IP to shift the beam waist. See the function documentation for more details. After applying the knob, we will re-match to our working point to make sure we do not deviate.
Hint
A waist shift knob setting of 1 will result in a 0.5% change in the triplets knob powering. The individual triplet magnets trims are not affected. Here we will use a setting of 1.5 to make the effect easily noticeable.
Let’s again retrieve the TWISS
table, then plot the new conditions in the
Interaction Region.
plt.figure(figsize=(18, 11))
plot_latwiss(
madx,
title="LHCB1 IR1 - With Rigid Waist Shift",
disp_ylim=(-0.4, 1.9),
xoffset=ip1s,
xlimits=(-200, 200),
k0l_lim=2.25e-3,
k1l_lim=6.1e-2,
lw=1.5,
)
plt.gcf().axes[-2].set_xlabel(r"$\mathrm{Distance\ to\ IP1\ [m]}$")
for axis in plt.gcf().axes:
axis.axvline(x=0, color="grey", ls="--", lw=1.5, label="IP1")
plt.show()
- Comparing to the previous plot, one can notice two things:
The triplet quadrupoles powering has changed.
The \(\beta_{x,y}\) functions symmetry has been broken.
One can compare the \(\beta_{x,y}\) functions before and after the rigid waist shift with a simple plot:
fig, ax = plt.subplots(figsize=(16, 10))
ax.plot(nominal_df.S - ip1s, 1e-3 * nominal_df.BETX, "b-", label=r"$\beta_x^n$")
ax.plot(waist_df.S - ip1s, 1e-3 * waist_df.BETX, "b--", label=r"$\beta_x^w$")
ax.plot(nominal_df.S - ip1s, 1e-3 * nominal_df.BETY, "r-", label=r"$\beta_y^n$")
ax.plot(waist_df.S - ip1s, 1e-3 * waist_df.BETY, "r--", label=r"$\beta_y^w$")
ax.set_xlabel(r"$\mathrm{Distance\ to\ IP1\ [m]}$")
ax.set_ylabel(r"$\beta_{x,y}\ \mathrm{[km]}$")
ax.set_xlim(-215, 215)
ax.set_ylim(-0.7, 9.3)
ax.xaxis.set_major_locator(plt.MaxNLocator(5))
ax.yaxis.set_major_locator(plt.MaxNLocator(5))
draw_ip_locations({"IP1": 0}, location="inside")
ax.legend(loc="lower center", bbox_to_anchor=(0.5, 1), ncols=4)
plt.tight_layout()
plt.show()
Here the subscript n stands for the nominal scenario, and w for the rigid waist shift scenario.
Tip
The differences observed will vary depending on the strength of the knob, which we choose with the rigidty_waist_shift_value parameter.
Let’s not forget to close the rpc connection to MAD-X
:
Determining the Waist Shift
Let’s now determine the value of the waist, aka the amount by which we have shifted the waist compared to the IP point location. To this end, we will use both an analytical approach and a more brute force one through simulations.
Let’s set up a rigid waist shift, with the addition of many marker elements in the close vicinity of the IP in order to get better resolution when looking at the \(\beta_{x,y}\) functions.
Let’s do so for the LHC 2022 optics, with pre-calculated knobs use in the LHC 2022 commissioning to speed up this file’s execution time.
b1_knobs = ["knobs/quadrupoles.madx", "knobs/triplets.madx", "knobs/working_point.madx"]
with Madx(stdout=False) as madx:
madx.option(echo=False, warn=False)
madx.call("acc-models-lhc/lhc.seq")
lhc.make_lhc_beams(madx, energy=6800)
madx.call("acc-models-lhc/operation/optics/R2022a_A30cmC30cmA10mL200cm.madx")
madx.command.use(sequence="lhcb1")
lhc.re_cycle_sequence(madx, sequence="lhcb1", start="MSIA.EXIT.B1")
madx.command.use(sequence="lhcb1")
lhc.make_lhc_thin(madx, sequence="lhcb1", slicefactor=4)
lhc.add_markers_around_lhc_ip(madx, sequence="lhcb1", ip=1, n_markers=1000, interval=0.001)
madx.command.twiss()
initial_twiss = madx.table.twiss.dframe()
# Calling pre-calculated and re-matched waist shift knobs
for knobfile in b1_knobs:
madx.call(knobfile)
matching.match_tunes(madx, "lhc", "lhcb1", 62.31, 60.32)
matching.match_chromaticities(madx, "lhc", "lhcb1", 2.0, 2.0)
matching.match_tunes_and_chromaticities(madx, "lhc", "lhcb1", 62.31, 60.32, 2.0, 2.0)
madx.command.twiss()
nominal_df = madx.table.twiss.dframe()
We will use all our added markers to determine the location of the waist, by simply finding with good resolution the minima of the \(\beta_{x,y}\) functions.
initial_twiss.name = initial_twiss.name.apply(lambda x: x[:-2])
nominal_df.name = nominal_df.name.apply(lambda x: x[:-2])
ip_s = nominal_df.s["ip1"]
slimits = (ip_s - 10, ip_s + 10)
around_ip = nominal_df[nominal_df.s.between(*slimits)]
initial_twiss = initial_twiss[initial_twiss.s.between(*slimits)]
waist_location = around_ip.s[around_ip.betx == around_ip.betx.min()].iloc[0]
We can also plot the \(\beta_{x,y}\) functions before and after the application of the rigid waist shift. Here one can clearly see the shift of the waist between the two configurations.
fig, axis = plt.subplots(figsize=(16, 10))
axis.plot(
around_ip.s - ip_s,
around_ip.betx,
ls="-",
color="blue",
marker=".",
label=r"$\beta_x^w$",
)
axis.plot(
around_ip.s - ip_s,
around_ip.bety,
ls="-",
color="orange",
marker=".",
label=r"$\beta_y^w$",
)
axis.axvline(0, color="purple", ls="--", lw=1.5, label="IP1")
axis.axvline(waist_location - ip_s, color="green", ls="--", lw=1.5, label="Waist")
axis.axvspan(waist_location - ip_s, 0, color="red", alpha=0.1)
axis.plot(
initial_twiss.s - ip_s,
initial_twiss.betx,
ls="-.",
color="blue",
alpha=0.5,
label=r"$\beta_x^n$",
)
axis.plot(
initial_twiss.s - ip_s,
initial_twiss.bety,
ls="-.",
color="orange",
alpha=0.5,
label=r"$\beta_y^n$",
)
plt.xlabel(r"$\mathrm{Distance \ to \ IP1 \ [m]}$")
plt.ylabel(r"$\beta_{x,y} \ \mathrm{[m]}$")
plt.legend(ncol=2)
plt.show()
The value of the waist is then simply the distance between the IP and the location of the found minima. Here is the value, in meters:
shift = ip_s - waist_location
print(shift)
-0.4350000000013097
Let’s now determine this value using the Eq. 10 formula in Carlier and Tomás [CT17]: \(\beta_0 = \beta_w + \frac{(L^{*} - w)^2}{\beta_w}\)
where \(\beta_0\) is the \(\beta\) function at the end of the quadrupole (Q1, end closest to IP); \(\beta_w`\) is the \(\beta\) function at the waist itself (found as the minimum of the \(\beta\)-function in the region); \(L^{*}\) is the distance from close end of quadrupole (Q1) to the IP point itself; and \(w\) is the waist displacement we are looking to figure out.
Manipulating the equation to determine the waist yields: \(w = L^{*} - \sqrt{\beta_0 \beta_w - \beta_w^2}\)
# to calculate from the right Q1 then from the left Q1
q1_right_s = nominal_df[nominal_df.name.str.contains("mqxa.1r1")].s.iloc[0]
q1_left_s = nominal_df[nominal_df.name.str.contains("mqxa.1l1")].s.iloc[-1]
L_star = ip_s - q1_left_s # say we calculate from left Q1
# beta0 = nominal_df[nominal_df.name.str.contains(f"mqxa.1r1")].betx.iloc[0] # from the right
beta0 = nominal_df[nominal_df.name.str.contains("mqxa.1l1")].betx.iloc[-1] # from the left
betaw = around_ip.betx.min()
The analytical result (sign will swap depending on if we calculate from left or right Q1) is then easily calculated. We can then compare this value to the one found with the markers we previously added, and they are fairly close.
Analytical: -0.4345416770281858
Markers: -0.4350000000013097
Seeing the effect through values of the knob
We can use the above to determine these values for different knob settings. First, let’s define some structures and functions.
Waist = namedtuple("Waist", ["x", "y"])
BetasIP = namedtuple("Betas", ["x", "y"])
Result = namedtuple("Result", ["waists", "betas"])
def find_waists(current_twiss: tfs.TfsDataFrame, initial_twiss: tfs.TfsDataFrame) -> Waist:
initial = initial_twiss.copy()
ip_s = current_twiss.S["IP1"]
slimits = (ip_s - 10, ip_s + 10)
around_ip = current_twiss[current_twiss.S.between(*slimits)]
initial = initial[initial.S.between(*slimits)].copy()
hor_waist_location = around_ip.S[around_ip.BETX.min() == around_ip.BETX].iloc[0]
ver_waist_location = around_ip.S[around_ip.BETY.min() == around_ip.BETY].iloc[0]
initial = initial_twiss.copy()
ip_s = current_twiss.S["IP1"]
slimits = (ip_s - 10, ip_s + 10)
around_ip = current_twiss[current_twiss.S.between(*slimits)]
initial = initial[initial.S.between(*slimits)].copy()
hor_waist_location = around_ip.S[around_ip.BETX.min() == around_ip.BETX].iloc[0]
ver_waist_location = around_ip.S[around_ip.BETY.min() == around_ip.BETY].iloc[0]
return Waist(ip_s - hor_waist_location, ip_s - ver_waist_location)
def find_betashifts(
current_twiss: tfs.TfsDataFrame, initial_twiss: tfs.TfsDataFrame
) -> BetasIP:
delta_betx = current_twiss.BETX["IP1"] - initial_twiss.BETX["IP1"]
delta_bety = current_twiss.BETY["IP1"] - initial_twiss.BETY["IP1"]
return BetasIP(delta_betx, delta_bety)
def simulation(knob_value: float) -> Result:
with lhc.LHCSetup(
run=3, opticsfile="R2022a_A30cmC30cmA10mL200cm.madx", slicefactor=4, stdout=False
) as madx:
lhc.add_markers_around_lhc_ip(
madx, sequence="lhcb1", ip=1, n_markers=1000, interval=0.001
)
ref_twiss = twiss.get_twiss_tfs(madx)
lhc.apply_lhc_rigidity_waist_shift_knob(madx, knob_value, ir=1)
new_twiss = twiss.get_twiss_tfs(madx)
reswaists = find_waists(new_twiss, ref_twiss)
resbetas = find_betashifts(new_twiss, ref_twiss)
return Result(reswaists, resbetas)
Let’s now run the simulation for different knob values:
parameter_space = np.linspace(-1, 1, 50)
results: list[Result] = Parallel(n_jobs=cpu_count(), backend="threading", verbose=0)(
delayed(simulation)(knob_value=knobval) for knobval in parameter_space
)
waist_x = np.array([res.waists.x for res in results])
waist_y = np.array([res.waists.y for res in results])
deltabetx = np.array([res.betas.x for res in results])
deltabety = np.array([res.betas.y for res in results])
We can now plot the results:
fig, axis = plt.subplots(figsize=(16, 10))
axis.plot(parameter_space, 1e2 * waist_x, "C0", marker="s", markersize=4)
axis.tick_params(axis="y", colors="C0")
axis.yaxis.label.set_color("C0")
axis.xaxis.set_major_locator(plt.MaxNLocator(5))
axis2 = axis.twinx()
axis2.yaxis.set_label_position("right")
axis2.yaxis.label.set_color("C1")
axis2.yaxis.tick_right()
axis2.tick_params(axis="y", colors="C1")
axis2.plot(
parameter_space,
1e2 * deltabetx,
"C1",
marker="o",
ls="-",
markersize=4,
label="Horizontal",
)
axis2.plot(
parameter_space,
1e2 * deltabety,
"C2",
marker="o",
ls="--",
markersize=4,
label="Vertical",
)
axis2.legend(loc="lower center", bbox_to_anchor=(0.5, 1), ncols=2)
axis.set_xlabel("Knob Setting")
axis.set_ylabel(r"$\mathrm{Waist_{X,Y}}$ Shift [cm]")
axis2.set_ylabel(r"$\Delta \beta^{\ast}$ [cm]")
plt.show()
Let’s not forget to close the rpc connection to MAD-X
:
References
The use of the following functions, methods, classes and modules is shown in this example:
lhc
:prepare_lhc_run3
,make_lhc_beams
,re_cycle_sequence
,apply_lhc_rigidity_waist_shift_knob
,make_lhc_thin
,add_markers_around_lhc_ip
matching
:match_tunes
,match_chromaticities
,match_tunes_and_chromaticities
twiss
:get_twiss_tfs
lattice
:plot_latwiss
utils
:draw_ip_locations
,get_lhc_ips_positions
Total running time of the script: (4 minutes 16.830 seconds)