Free Tracking Spectrum

This example shows how to use the track_single_particle function to track a particle with the TRACK command of MAD-X, and visualise its coordinates and spectrum.

In this example we will use the LHC lattice to illustrate the tracking workflow when using cpymadtools.

Important

This example requires the acc-models-lhc repository to be cloned locally. One can get it by running the following command:

git clone -b 2022 https://gitlab.cern.ch/acc-models/acc-models-lhc.git --depth 1

Here I set the 2022 branch for stability and reproducibility of the documentation builds, but you can use any branch you want.

import matplotlib.pyplot as plt
import numpy as np

from pyhdtoolkit.cpymadtools import lhc, track
from pyhdtoolkit.plotting.styles import _SPHINX_GALLERY_PARAMS
from pyhdtoolkit.utils import logging

logging.config_logger(level="error")
plt.rcParams.update(_SPHINX_GALLERY_PARAMS)  # for readability of this tutorial

Let’s start by setting up the LHC in MAD-X, in this case at collision optics and energy and with a sliced lattice. To understand the function below have a look at the lhc setup example.

madx = lhc.prepare_lhc_run3(
    opticsfile="R2022a_A30cmC30cmA10mL200cm.madx", slicefactor=4, stdout=False
)

Now we can track a particle. By default, the “start of machine” as MAD-X sees it is where coordinates will be registered each turn. It is possible with this function to provide additional elements at which to record coordinates. In our example, we’ll provide two BPMs for demonstration purposes.

The function accepts many other options that will be provided to the TRACK command, please refer to the API reference for more information.

Note

When providing additional observation points, each element must be a string, and be the exact name of the element as given to MAD-X.

tracks_dict = track.track_single_particle(
    madx,
    nturns=1023,
    initial_coordinates=(2e-4, 0, 1e-4, 0, 0, 0),  # this is actually quite high!
    observation_points=["BPMSW.1L1.B1_DOROS", "BPMSW.1R1.B1_DOROS"],
    # RECLOSS=True,  # Create an internal table recording lost particles
    # ONEPASS=True,  # Do not search closed orbit and give coordinates relatively to the reference orbit
    # DUMP=True,  # Write to file
    # FILE="track",  # File for export if DUMP=True, MAD-X appends "one" to this name if we set ONETABLE to True
    # ONETABLE=True,  # Gather all observation points data into a single table (and file if DUMP set to True)
)

The function returns a dictionary with an entry per observation point, named observation_point_n where n is the number of the observation point, in the order they are provided. In our example, we will have three observation points: the start of machine and the two provided BPMs.

Each key holds as value a DataFrame with the following columns: number, turn, x, px, y, py, t, pt, s, e. See for instance below:

tracks_dict["observation_point_2"]
number turn x px y py t pt s e
bpmsw.1l1.b1_doros 1.0 1.0 -0.001098 0.000050 0.000004 2.959826e-07 -3.763407e-07 0.0 0.0 6800.0
bpmsw.1l1.b1_doros 1.0 2.0 -0.000320 0.000016 0.000661 -3.082253e-05 -3.564916e-07 0.0 0.0 6800.0
bpmsw.1l1.b1_doros 1.0 3.0 0.001329 -0.000062 -0.000555 2.540655e-05 -3.491807e-07 0.0 0.0 6800.0
bpmsw.1l1.b1_doros 1.0 4.0 -0.000676 0.000031 -0.000183 8.936081e-06 -3.810800e-07 0.0 0.0 6800.0
bpmsw.1l1.b1_doros 1.0 5.0 -0.000830 0.000039 0.000710 -3.298023e-05 -3.456599e-07 0.0 0.0 6800.0
... ... ... ... ... ... ... ... ... ... ...
bpmsw.1l1.b1_doros 1.0 1019.0 0.001344 -0.000062 0.000734 -3.397093e-05 -6.461261e-07 0.0 0.0 6800.0
bpmsw.1l1.b1_doros 1.0 1020.0 -0.000490 0.000022 -0.000286 1.280504e-05 -6.776840e-07 0.0 0.0 6800.0
bpmsw.1l1.b1_doros 1.0 1021.0 -0.000981 0.000046 -0.000489 2.299814e-05 -6.557071e-07 0.0 0.0 6800.0
bpmsw.1l1.b1_doros 1.0 1022.0 0.001198 -0.000055 0.000694 -3.203857e-05 -6.574820e-07 0.0 0.0 6800.0
bpmsw.1l1.b1_doros 1.0 1023.0 0.000089 -0.000005 -0.000102 4.251582e-06 -6.764902e-07 0.0 0.0 6800.0

1023 rows × 10 columns



Once tracking data is obtained, one can easily plot the coordinates and spectrum using the convenience DataFrame plotting methods. Here it is for the first obeservation BPM we provided above:

tracks = tracks_dict["observation_point_2"]  # point 1 for MAD-X is start of machine as defined
tracks.plot(
    x="turn",
    y=["x", "y"],
    marker=".",
    xlabel="Turn Number",
    ylabel="Transverse Positions $[m]$",
    figsize=(18, 10),
)
plt.show()
demo track spectra

In order to plot the spectra of the particle motion, one should first compute them. This is the matter of a simple fast fourier transform:

tracks["horizontal"] = np.abs(np.fft.fft(tracks["x"]))  # x spectrum
tracks["vertical"] = np.abs(np.fft.fft(tracks["y"]))  # y spectrum
tracks["tunes"] = np.linspace(0, 1, len(tracks))  # used for x-axis when plotting

Tip

To get the fractional tunes of the particle, one can find the peak of the spectra.

qx = tracks.tunes[tracks.horizontal == tracks.horizontal.max()].to_numpy()[0]
qy = tracks.tunes[tracks.vertical == tracks.vertical.max()].to_numpy()[0]

One can then plot the spectra by plotting the computed values against the tune space:

tracks.plot(
    x="tunes",
    y=["horizontal", "vertical"],
    marker=".",
    xlim=(0.25, 0.4),
    xlabel="Tunes",
    ylabel="Spectrum [a.u]",
    figsize=(18, 10),
)
plt.show()
demo track spectra

In case the user provided ONETABLE=True to the tracking function, then all observation points data will be stored in a single DataFrame that can be accessed with the trackone key in the returned dictionary. In that case, accessing the coordinates at a given observation point is done by making use of the DataFrame indexing syntax:

tracks_dict = track.track_single_particle(
    madx,
    nturns=10,  # few turns to speedup the example
    initial_coordinates=(2e-4, 0, 1e-4, 0, 0, 0),
    observation_points=["BPMSW.1L1.B1_DOROS", "BPMSW.1R1.B1_DOROS"],
    ONETABLE=True,  # Gather all observation points data into a single table (and file if DUMP set to True)
)

observation_point = "BPMSW.1L1.B1_DOROS"
tracks = tracks_dict["trackone"]
tracks[tracks.index == observation_point.lower()]  # cpymad lower-cases the names
number turn x px y py t pt s e
bpmsw.1l1.b1_doros 1.0 1.0 -0.001098 0.000050 0.000004 2.959826e-07 -3.763407e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 2.0 -0.000320 0.000016 0.000661 -3.082253e-05 -3.564916e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 3.0 0.001329 -0.000062 -0.000555 2.540655e-05 -3.491807e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 4.0 -0.000676 0.000031 -0.000183 8.936081e-06 -3.810800e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 5.0 -0.000830 0.000039 0.000710 -3.298023e-05 -3.456599e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 6.0 0.001274 -0.000059 -0.000407 1.847747e-05 -3.640162e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 7.0 -0.000119 0.000005 -0.000362 1.715175e-05 -3.759093e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 8.0 -0.001186 0.000055 0.000715 -3.307915e-05 -3.426777e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 9.0 0.000974 -0.000045 -0.000233 1.033764e-05 -3.780484e-07 0.0 23497.790616 0.0
bpmsw.1l1.b1_doros 1.0 10.0 0.000467 -0.000022 -0.000518 2.430951e-05 -3.636226e-07 0.0 23497.790616 0.0


Let’s not forget to close the rpc connection to MAD-X:

References

The use of the following functions, methods, classes and modules is shown in this example:

  • lhc: prepare_lhc_run3

  • track: track_single_particle

Total running time of the script: (0 minutes 32.462 seconds)

Gallery generated by Sphinx-Gallery